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8-80. Let G be the magnetic field of a z-directed current element situated y > 0
and radiating in the presence of a perfect electric conduector covering the y = 0 plane.
In other words, let ¢ = u, and S be the y = 0 plane. Show that

_ e—ikry e—ikrs
GA-VXI.I.( 1 - rz:-)
where n=vVe -2+ -y)7¢+@E-2)
rr=E -2+ @ +v)?+@—2)

8-31. Specialize the G, of Prob. 3-30 to r, —» «, and apply Eq. (3-57) to the prob-
lem of Fig. 3-28. Show that this gives the same answer as obtained in Prob. 3-19.

8-32. Apply duality to Eqs. (3-65), and evaluate the magnetic tensor Green’s
function [I'] defined by

H = [IKl
in free space.
3-33. Evaluate the I';; for the free-space tensor Green’s function defined by

H =[]l

8-34. Repeat Prob. 3-20 using the physical optics approximation, and show that
the answer for E.* differs from that of Prob. 3-20 by an interchange of ¢ and ¢o.
Show that the echo area is identical to that of Prob. 3-20.

8-86. Repeat Prob_. 3-21 using the physical optics approximation, and show that
the answer for H,* differs from that of Prob. 3-21 by an interchange of ¢ and ¢o.
Show that the echo area is identical to that of Prob. 8-21.

'3-36. Ifet ¥ = e7%in Eqs. (3-86), and evaluate the electromagnetic field. Classify
this field in as many ways as you can (wave-type, polarization, ete.).

.3-37. Lety = e i*=in Eqs. (3-89), and evaluate the electromagnetic field. Classify
this field in as many ways as you can.

8-38. Let ¢ = u,, Yo = ¢7ik Y/ = je~i* and evaluate Egs. (3-91). Classify this
field in as many ways as you can.

(3 89—53;9 Derive Eqs. (3-97) by expanding Eqs. (3-4) with A and F as given by Eqgs.

CHAPTER 4

PLANE WAVE FUNCTIONS

4-1, The Wave Functions. The problems that we have considered so
far are of two types: (1) those reducible to sources in an unbounded
homogeneous region, and (2) those solvable by using one or more uni-
form plane waves. Equations (3-91) show us how to construct general
solutions to the field equations in homogeneous regions once we have
general solutions to the scalar Helmholtz equation. By a method called
separation of variables, general solutions to the Helmholtz equation can be
constructed in certain coordinate systems.! In this section, we use the
method of separation of variables to obtain solutions for the rectangular
coordinate system.

The Helmholtz equation in rectangular coordinates is

3 ey . o2
a:ﬁ 6y‘i azf Ty =0 (¢-1)

The method of separation of variables seeks to find solutions of the form
Vv = X(@)Y@)Z() (4-2)

that is, solutions which are the product of three functions of one coordi-
nate each. Substitution of Eq. (4-2) into Eq. (4-1), and division by ¢,
yields '

142X | 1d*Y |, 1d*Z

X TV T Zde
Each term can depend, at most, on only one coordinate. Since each
coordinate can be varied independently, Eq. (4-3) can sum to zero for
all coordinate values only if each term is independent of z, y, and .
Thus, let

+k2=0 (4-3)

1@X _ ., l&Y_ ., l&Z_ g,
X dx? “ Y dy? Z dz* ?

where k, k,, and k. are constants, that is, are independent of z, ¥, and z.

(The choice of minus a constant squared is taken for later convenience.)

11t has been shown by Eisenhart (Ann. Math., vol. 35, p. 284, 1934) that the

Helmholtz equation is separable in 11 three-dimensional orthogonal coordinate systems.
143
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We now have Eq. (4-1) separated into the trio of equations

X f kX =0

dY .

dy2 + kY =0 (4-4)
W"'k,zZ:O

where, by Eq. (4-3), the separation parameters must satisfy
k2 k2 k2= k2 (4-5)

This last equation is called the separation equation.

Equations (4-4) are all of the same form. They will be called harmonic
eguations. Any solution to the harmonic equation we shall call a
harmonic function,' and denote it, in general, by h(k.x). Commonly
used harmonic functions are

h(k,,d}) ~ sin kzx, cos kzx, eiksz’ ¢g—ikaz (4-6)

Any two of these are linearly independent. A constant times a harmonic
function is still a harmonic function. A sum of harmonic functions is
still a harmonic function. From Egs. (4-2) and (4-4) it is evident that

Vi, = (k)R (kyy)h(k:2) (4-7)

are solutions fo the Helmholtz equation when the k; satisfy Eq. (4-5).
These solutions are called elementary wave functions.

Linear combinations of the elementary wave functions must also be
solutions to the Helmholtz equation. As evidenced by Eq. (4-5), only
two of the k; may be chosen independently. We can therefore construct
more general wave functions by summing over possible choices for one or
two separation parameters. For example,

¥ = z z Brox, Wk,
Py

= 2 z B (kesz) k() h(kuz) (4-8)

kz ky

where the B;; are constants, is a solution to the Helmholtz equation. The
values of the k7 needed for any particular problem are determined by the
boundary conditions of the problem and are called etgenvalues or charac-
teristic values. The elementary wave functions corresponding to specific
eigenvalues are called eigenfunctions.

1 The term karmonic function also is used to denote a solution to Laplace’s equation.
This is not the present meaning of the term.
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Still more general wave functions can be constructed by integrating
over one or two of the k.. For example, a solution to the Helmholtz
equation is

¥ = [ 1) rss, dk- dk,
kz ky
= [ [ 1k () () hhs2) b by (4-9)

k= ky

where f(k;,k,) is an analytic function, and the integration is over any
path in the complex &, and k, domains. Equation (4-9) exhibits a con-
tinuous variation of the separation parameters, and we say that there
exists a continuous spectrum of eigenvalues. We shall see that solutions
for finite regions (waveguides and cavities) are characterized by discrete
spectra of eigenvalues, while solutions for unbounded regions (antennas)
often require continuous spectra. Wave functions of the form of
Eq. (4-9) are most commonly used to construct Fourier integrals.

We should be familiar with the mathematical properties and with the
physical interpretations of the various harmonic functions so that we can
properly choose them for particular problems. Keep in mind that wave
functions represent instantaneous quantities, according to Eq. (1-40).
Solutions of the form h(kx) = ¢*= (k positive real) represent waves
traveling unattenuated in the -z direction. If % is complex and
Re (k) > 0, we have 4z traveling waves which are attenuated or aug-
mented according as Im (k) is negative or positive. Similarly, solutions
of the form h(kz) = ¢, [Re (k) > 0] represent —z traveling waves,
attenuated or augmented if & is complex. If & is purely imaginary, the
above two harmonic functions represent evanescent fields. Solutions of
the form h(kz) = sin kx and h(kz) = cos kz with % real represent pure
standing waves. If kis complex, they represent localized standing waves.
If k is purely imaginary, say k¥ = —jo with areal, then the ““ trigonometric
functions”’ sin kz and cos kz can be expressed as ‘‘hyperbolic functions’’
sinh az and cosh ax. We should get used to thinking of the various
functions as defined over the entire complex %z plane. The trigonometric
and hyperbolic functions are then just specializations of the complex har-
monic functions. Table 4-1 summarizes the above discussion. (The
convention kt = 8 — ja with o and B real is used.) Note that the
degenerate case ¥ = 0 has the harmonic functions 2(0z) = 1,z. The
choice of the proper harmonic functions in any particular case is largely
a matter of experience, and facility in this respect will be gained as we
use them.

4-2. Plane Waves. Consider an elementary wave function of the form

Y = eikargityg ik (4-10)
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TABLE 4-1. PROPERTIES oF THE HarMONICc FuUNCTIONS*

Specializa-

h(kz) Zerost Infinitiest | tions of Special _ Physical
. representations interpretation
k=g —ja
F
k real e~ iBs +z traveling wave
e~ ik kz— —jw kz— jo k imaginary | e—a= Evanescent field

k complex e~azg=if= Attenuated traveling wave

k real ¢iflz —z traveling wave
eikz kz— jw kz— —jw | k imaginary | exz Evanescent field
k complex eazeifz Attenuated traveling wave
k real sin Bz Standing wave.
sin kz | kz = nx kz~> tje | k imaginary | —j sinh az Two evanescent fields
k complex sin Bz cosh az Localized standing waves

— 7 cos Bz sinh az

k real cos 8z Standing wave

cos kz | kz = (n + 34)x | kz— +j» | k imaginary | cosh az Two evanescent fields

k complex cos 8z cosh az Localized standing waves
-+7 sin 8z sinh az

* For k = 0, the harmonic functions are h(0z) = 1,z.
1 For an essential singularity, this column gives the asymptotic behavior.

The k; must satisfy Eq. (4-5), which is of the form of the scalar product
of a vector

k = uk, + uk, 4+ u,k, (4-11)
with itself. Note that in terms of k and the radius vector
I =us 4+ uy + uz (4-12)

we can express Eq. (4-10) as
Y = egkT (4-13)
For k real, we apply Eq. (2-140) and determine the vector phase constant
B=-v(-k:1) =k
Hence, the equiphase surfaces are planes perpendicular to k. The ampli-
tude of the wave is constant (unity). Equation (4-13) therefore repre-
sents a scalar uniform plane wave propagating in the direction of k.
Figure 4-1 illustrates this interpretation.
For k complex, we define two real vectors

k=8 —ja (4-14)
and determine the vector propagation constant according to Eq. (2-145).
This gives

= —V(—jk-1) = jk = « +j8

We now have equiphase surfaces perpendicular to 8 and equiamplitude
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Equiphase  Direction of
7 surface propagation

F1gG. 4-1. A uniform plane
wave.

X

surfaces perpendicular to e. Thus, when k is complex, Eq. (4-13) repre-
sents a plane wave propagating in the direction of 3 and attenuating in
the direction of «. It is a uniform plane wave only if § and « are in the
same direction. Note that definitions k = 8 — je and k& = k' — jk'’ do
not imply that 8 equals &’ or that « equals k" in general. In fact, for

loss-free media,

k2=k-k=8—a%?—j2a-8

must be positive real. Hence, either « = 0 or -3 = 0. When « =0
we have the uniform plane wave discussed above. When e« and § are
mutually orthogonal we have an evanescent field, such as was encountered
in total reflection [Eq. (2-62)].

The elementary wave functions of Eq. (4-10) or Eq. (4-13) are quite
general, since sinusoidal wave functions are linear combinations of the
exponential wave functions. Wave functions of the type of Eqgs. (4-8)
and (4-9) are linear combinations of the elementary wave functions. We
therefore conjecture that all wave functions can be expressed as super-
positions of plane waves.

Let us now consider the electromagnetic fields that we can construct
from the wave functions of Eq. (4-10). Fields TM to z are obtained if
 is interpreted according to A = u,¢. This choice results in Egs. (3-86),
which, for the ¢ of Eq. (4-10), become

H = —ujky + ugky

=Vy Xu =jju, Xk (4-15)
and 9E = jk.(ugk: + u,gk, + wjk)y + vk
’ = (—kzk + ukBy (4-16)

For k real, H is perpendicular to k by Eq. (4-15), and E is perpendicular
to k, since
gk -E = (—kk? + ki)Y =0
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Thus, the wave is TEM to the direction of propagation (as well as TM
to z). For k complex, define ¢ and § by Eq. (4-14). It then follows
that the wave is not necessarily TEM to the direction of propagation
(that of 8). It will be TEM to 3 only if @ and B are in the same direc-
tion, that is, if -

k=03 —ja= (ul+um-+unk

with I, m, n real. In this case, 8 = k', « = k", and I, m, n are the
direction cosines.

The dual procedure applies when ¢ is interpreted according to F = u.y.
In this case, Eqs. (3-89) apply, giving

E=jjyk Xu,
H = (—k.k + u.k?)y

which are dual to Egs. (4-15) and (4-16). For k real, this is a wave
TEM tok and TE toz. Its polarization is orthogonal to the correspond-
ing TM-to-z wave. For k complex, the wave is not necessarily TEM to
the direction of propagation. All these fields are plane waves. An arbi-
trary electromagnetic field in a homogeneous region can be considered
as a superposition of these plane waves. ’

4-3. The Rectangular Waveguide. The problem of determining modes
in a rectangular waveguide provides a good illustration of the use of ele-
mentary wave functions. In Sec. 2-7 we considered only the dominant
mode. In this section we shall consider the complete mode spectrum.
The geometry of the rectangular waveguide is illustrated by Fig. 2-16.

It is conventional to classify the modes in a rectangular waveguide as
TM to z (no H,) and TE to z (no E,). Modes TM to 2 are expressible in
terms of an A having only a z component ¢. We wish to consider travel~
ing waves; hence we consider wave functions of the form

¥ = h(kz)h(k,y)e %= (4-18)
The electromagnetic field is given by Eqs. (3-86). In particular,

(4-17)

1
Ez=" kz_ 22
5 k%)

The boundary conditions on the problem are that tangential components

of E vanish at the conducting walls. Hence, E. must be zero at x = 0,
=ga,y =0, and y = b. The only harmonic functions having two or

more zeros are the sinusoidal functions with k; real. Thus, choose

mr

h(ksr) = sin kx k,=7 m=1213, ...
k) =sinky k=T  n=123 ...
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so that the boundary conditions on E, are satisfied. Each integer m and
n specifies a possible field, or mode. The TM., mode funciions are
therefore

Y™ = Sin o2 sin Y gk (4-19)
a b
withm =1,2,3,...,andn =1,2,3, . . . , and the separation param-
eter equation [Eq. (4-5)] becomes
(7%) * (% +kt = E (4-20)

The TM,.. mode fields are obtained by substituting the ¢».™ into Eqgs.
(3-86).

Modes TE to z are expressible in terms of an F having only a z com-
ponent . Again, we wish to find traveling waves; so the ¥ must be of
the form of Egs. (4-18). The electromagnetic field this time will be given

by Eqgs. (3-89). In particular,

g%
B.= -3, E”_é):z:

the first of which must vanish at y = 0, y = b, and the second at z = 0,
z = a. Harmonic functions satisfying these boundary conditions are

h(k.z) = cos ks kz=m7"r m=0,1,2 ...
h(ky) = cosky k=T  m=01,2 ...

Each integer m and n, except m = n = 0 (in which case E vanishes
identically), specifies 2 mode. Hence, the TE., mode functions are

Ymn'® = cOS m__;ra: cos Tg—y g ke (4-21)
withm =0,1,2,...;n=0,1,2 ... ;m=n=0excepted. The

separation parameter equation remains the same as in the TM case [Eq.
(4-20)]. The TE,. mode fields are obtained by substituting the ¥m.™
into Eqgs. (3-89).

Interpretation of each mode is similar to that of the dominant TEq,
mode, considered in Sec. 2-7. Equation (4-20) determines the mode
propagation constant y = jk.. For k real, the propagation constant

vanishes when k& is
mar\* n1r)2 _
\/< a ) + b/ (ke)on (4-22)
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The (k.)mn is called the cutoff wave number of the mn mode. For other
values of k, we have

.718 = .7 ,\/k2 - (kc)mnz k> kc
o=Vl — B E<k

Thus, for & > k. the mode is propagating, and for &k < k., the mode is
nonpropagating (evanescent). From Eq. (4-22) we determine the cutoff

frequencies
k. 1 m 2 n\2
c)mn = = = = = b 4-24
(fe) o Ve 21V e (a) + (b) ( )

and the cutoff wavelengths

Ymn = ]kz = { (4-23)

]

_2 2 -
R (ORI D )

In terms of the cutoff frequencies, we can re-express the mode propagation

constants as
=iy = (&) s>u
a=k¢\/1—<£>2 f<f

where mode indices mn are implied. We can also define mode wave-
lengths for each mode by Eq. (2-85) and mode phase velocities by Eq.
(2-86), where mode indices are again implied.

It is apparent that v = jk, for each mode has the same interpretation
as v for the TEq; mode. It is the physical size (compared to wavelength)
of the waveguide that determines which modes propagate. Table 4-2
gives a tabulation of some of the smaller eigenvalues for various ratios
b/a. Whenever two or more modes have the same cutoff frequency, they
are said to be degenerate modes. The corresponding TE,., and TM.,
modes are always degenerate in the rectangular guide (but not in other-
shaped guides). In the square guide (b/a = 1), the TEna, TEpm, TMpa,
and TM,,,, modes form a foursome of degeneracy. Waveguides are usu-
ally constructed so that only one mode propagates, hence b/a > 1 usually.
For b/a = 2, we have a 2:1 frequency range of single-mode operation,
and this is the most common practical geometry. It is undesirable to
make b/a greater than 2 for high-power operation, since, if the guide is
too thin, arcing may occur. (The breakdown power is proportional to
+/a for fixed b.) To illustrate the use of Table 4-2, suppose we wish to
design an air-filled waveguide to propagate the TE,y; mode at 10,000 mega-
cycles (A = 3 centimeters). We do not wish to operate too close to f.,
since the conductor losses are then large (see Table 2-4). If we take

v = jk. = (4-26)
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TABLE 4-2. Umn _ Jdmn _ (don FOR THE RECTANGULAR WAVEGUIDE, b > a
(k) o1 (o Admn

b TE; TE;; | TEy | TEx

a TEOl TEIO TMll TE02 TE20 r]':\M12 Tle TM22 TE03
1 1 1 1.414 2 2 2.236 | 2.236 | 2.828 3
1.5 1 1.5 1.803 2 3 2.500 | 3.162 | 3.606 3
2 1 2 2.236 2 4 2.828 | 4.123 | 4.472 3
3 1 3 3.162 2 6 3.606 | 6.083 | 6.325 3

0 1 © 0 2 © o w0 © 3

[

b = 2 centimeters, then A, = 4 centimeters for the TE,; mode, and we
are operating well above cutoff. The next modes to become propagating
are the TE;o and TEy; modes, at a frequency of 15,000 megacycles. The
TE.: and TM;; modes become propagating at 16,770 megacycles, and
S0 on. ,

The mode patterns (field lines) are also of interest. For this, we deter-

" mine E and H from Egs. (3-86) and (4-19) or Egs. (3-89) and (4-21),

and then determine 8, 3¢ from Eq. (1-41). The mode pattern is a plot
of lines of & and 3¢ at some instant. (A more direct procedure for obtain-
ing the mode patterns is considered in Sec. 8-1.) Figure 4-2 shows
sketches of cross-sectional mode patterns for some of the lower-order
modes. When a line appears to end in space in these patterns, it actually
loops down the guide. A more complete picture is shown for the TEq;
mode in Fig. 2-17.

In addition, each mode is characterized by a constant (with respect to

R SRS,
TR 13T AN

Em> H————>
Fi1G. 4-2, Rectangular waveguide mode patterns,
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x, y) z-directed wave impedance. For the TEn, modes in loss-free media,
we have from Eqs. (3-89) and (4-21)

. ., 0 .
JopH, = —jk, a—ﬁ =. —jk.E,

. . 0 R
jouH, = —ik, a—z — jk.E,

The TE.. characteristic wave impedances are therefore

wp
a f > fc
E, E, owp 8
(Zoa™ = 22 = — Z0 OB _ )| @2
H, H, L, ]c;u F<i, )

Similérly, for the TM,., modes, we have from Egs. (3-86) and (4-19)
. ., 0 .
By = —jk, a—i’ = jk.H,

JweE, = —jk, % = —jk.H,

dy
Thus, the TM, characteristic wave impedances are
B
— - f > fc
G = Bz = =By _ Je ) we (4-28)
H, H, € a F<f
Jwe ¢

It is interesting to note that the product (Zo)mnT™(Zo)mn™ = 72 at all fre-
quencies. By Eq. (4-26), 8 < k for propagating modes; so the TE char-
acteristic wave impedances are always greater than 7, and the TM char-
acteristic wave impedances are always less than 4. For nonpropagating
modes, the TE characteristic impedances are inductive, and the TM
characteristic impedances are capacitive. Figure 4-3 illustrates this
behavior. '

Attenuation of the higher-order modes due to dielectric losses is given

by the same formula as for the dominant mode (see Table 2-4). Attenu-

ation due to conductor losses is given in Prob. 4-4.

4-4. Alternative Mode Sets. The classification of waveguide modes
into sets TE or TM to 2 is important because it applies also to guides of
nonrectangular cross section. However, for many rectangular waveguide
problems, more convenient classifications can be made. We now con-
sider these alternative sets of modes.

If, instead of Eq. (3-84), we choose

A=uy (4-29)

2n

This field is TM to 2.
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\ l Zo_{Ro £>fe

\ / \ T iXe f<fe
: R,TE
\ \

\ ™

>
\
\
\
\

f/fe

Frc. 4-3. Characteristic impedance of waveguide modes.

E=la_z+k2¢ H.=0
£ g \9z?

1 0%y 9y
= — H=_
E, 4 dz dy v oz
g =1 _
* g oz e Loy

F =uy
we have an electromagnetic field given by
— 1 a 2
E.=0 H’—§<ax2+k)¢
_ % _ 1y
B=—5 H”__éaxay
_ % _1 %
T 9y 27 29z 9z

we have an electromagnetic field given by a set of equations differing
from Eqs. (3-86) by a cyclic interchange of z, y, 2.
field is given by

To be specific, the

(4-30)

Similarly, if, instead of Eq. (3-87), we choose

(4-31)

(4-32)
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This field is TE to z. According to the concepts of Sec. 3-12, an arbi-
trary field can be constructed as a superposition of Eqgs. (4-30) and (4-32).

The choice of ¥’s to satisfy the boundary conditions for the rectangular
waveguide (Fig. 2-16) is relatively simple. For modes TM to z (TMzpa

modes) we have
YmnTM® = COS m_;rg sin n%y eikr (4-33)
where m =0,1,2,...;n=1,2 3, ... ;andk is given by Eq.

(4-26). The electromagnetic field is found by substituting Eq. (4-33)
into Eqs. (4-30). For modes TE to 2 (TEzn, modes) we have

YmnTE® = sin T2 hos Y gmikes (4-34)
a b
wherem =1,2,3,...;n=0,1,2, ... ;and k, is again given by

Eq. (4-26). The field is obtained by substituting Eq. (4-34) into Eqgs.
(4-32). Note that the TMzo, modes are the TEo, modes of Sec. 4-3,
and the TEz.o modes are the TEn, modes. All other modes of Egs.
(4-33) and (4-34) are linear combinations of the degenerate sets of TE
and TM modes. Note that our present set of modes have both an E,
and H, (except for the 0-order modes). Such modes are called hybrid.

The mode patterns of these hybrid modes can be determined in the
usual manner. (Determine E, H, then &, 3¢, and specialize to some
instant of time.) The TEz..c mode patterns are those of the TE.; modes,
and the TMz,, mode patterns are those of the TEq, modes. Figure 4-4
shows the mode patterns for the TEz;; and TMz1: modes, to illustrate
the character of the higher-order mode patterns.

The characteristic impedances of the hybrid modes are also of interest.
For the TMz modes, we have from Eqs. (4-30) and (4-33)

joeE, = [kz - (ﬂ'ﬂw H, = —jk

a

Hence, the z-directed wave impedances are

k2 — (mw/a)?

f>7
e _ Bz _ kP — (mw/a)® _ wef }
(Zo)ma™= = H, - ek, )k — (mr/a) f <t (4-35)

— jwea

Note that for a small, the cutoff TMz,., modes, m = 0, have capacitive
Zy's, while the cutoff TMzq, modes have inductive Z¢’s. Similarly, from
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(6) TMx11
FiG. 4-4. Hybrid mode patterns.

Eqgs. (4-32) and (4-34) we find

wuf
(Z) TEz — _‘Ey _ w'u,kz - k2 — (m1r/a,)2 f > fc (4-36)
0}mn H. k2 — (mr/a)? —jwpa
B (e <

Note that for a small, the cutoff TEz, modes all have inductive charac-
teristic impedances.

Sets of modes TM and TE to y can be determined by letting A = u,
and F = u,y, respectively. The fields would be given by equations
similar to Bqgs. (4-30) and (4-32) with z, y, z properly interchanged.
The TMy and TEy mode functions would be given by Egs. (4-33) and
(4-34) with mz/a and ny/b interchanged.

4-5. The Rectangular Cavity. We considered the dominant mode of
the rectangular cavity in Sec. 2-8. We shall now consider the complete
mode spectrum. The geometry of the rectangular cavity is illustrated
by Fig. 2-19.

The problem is symmetrical in z, y, z; so we can express the fields as
TE or TM to any one of these coordinates. It is conventional to choose
the z coordinate, and then the cavity modes are standing waves of the
usual TE and TM waveguide modes. The wave functions of Eq. (4-19)
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satisfy the boundary condition of zero tangential E at four of the walls.
It is merely necessary to repick h(k.z) to satisfy this condition at the
remaining two walls. This is evidently accomplished if

_.ommx . nwy  pmz
e = sin —= sin == cos == (4-37)
withm =1, 2, 3, ;=123 ...;p=0,12 ... ;and Eq.

(4-20) becomes

mar\? nar\? pr\?

(%) + () + (%)

The field of the TM..., mode is given by substitution of Eq. (4-37) into
Eqgs. (3-86). Similarly, the TEn,, mode functions are given by

k2 (4-38)

15— gos T o Y iy P2 ]
mnp = COS —-= €OS — < sin — (4-39)
withm = 0,1, 2, ;n=201,2 ;p=123 .om=n=0

excepted. The separation equation remains Eq. (4-38). The TE,.,
mode field is given by substitution of Eq. (4-39) into Eqgs. (3-89).

As indicated by Eq. (4-38), each mode can exist at only a single ,
given a, b, ¢. Setting k = 2nf v/ en, we solve Eq. (4-38) for the resonant

frequencies
(o mmp = ﬂl/—e_; \/ <%>2 + <7—Z>2 + (%)2 (4-40)

For a < b < ¢, the dominant mode is the TEq;; mode. Table 4-3 gives
the ratio (fr)map/(f-)o11 for cavities of various side lengths. Note that

TaBLE 4-3. %ﬂ FOR THE RECTANGULAR Cavity, a <b <c¢
r/o11
21 S | TBow| TBio| TMuso| o3| T TBos Thao| TEros TMzo | TMso | 7012
a a 111 TE112
1 1 1 1 1 1.22 |1.581.58{1.5811.58| 1.58 | 1.58 | 1.73
1 2| 1 1 1.26 | 1.34 [1.26{1.84|1.84(1.26{ 2.00 | 2.00 | 1.55
2| 2( 1 |1.58) 1.58 | 1.73 {1.58(1.58(2.91|2.00| 2.00 | 2.91 | 2.12
2| 4| 1 ][1.84] 2.00 | 2.05 [1.26]1.84|3.60(2.00| 2.53 | 3.68 | 2.19
4| 4{ 1 |2.91] 2.91 | 3.00(1.58(1.58{5.71/3.16] 3.16 | 5.71 | 3.24
4 8| 1 {3.62]{ 3.65| 3.66 {1.26/1.84|7.20{3.65| 4.03 | 7.25 | 3.82
4116 | 1 (3.88( 4.00 § 4.01 |1.08/1.96|7.76{3.91| 4.35 | 7.83 | 4.13
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the TE,.., and TMp,., modes, mnp all nonzero, are always degenerate.
When two or more sides of the cavity are of equal length, still other
degeneracies occur. The greatest separation between the dominant mode
and the next lowest-order mode is obtained for a square-base cavity
(b = ¢) with height one-half or less of the base length (b/a > 2). In
this case, the second resonance is v/%5 = 1.58 times the first resonance.
The mode patterns of the rectangular cavity are similar to those of the
TE or TM waveguide modes in a z = constant plane, and similar to the
hybrid mode patterns in the other two cross sections. The most signifi-
cant difference between the waveguide patterns and the cavity patterns
is that & is shifted from 3¢ by A\,/4 in the latter case. Also, & and %€ are
90° out of phase in a cavity; so & is zero when 3¢ is maximum, and vice
versa. The TE¢; mode pattern is shown in Fig. 2-20. To illustrate
higher-order mode patterns, Fig. 4-5 shows the TEi,; mode pattern.
The quality factor @ of each cavity mode can be determined by the
method used in Sec. 2-8 for the dominant mode. The @ due to dielectric
losses is the same for all modes, given by Eq. (2-100). The @’s due to

- conductor losses for the various modes are given in Prob. 4-10. Note

that the Q increases as the mode order increases. The @ varies roughly
as the ratio of volume to surface area of the cavity, since the energy is
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Fra. 4-5. Rectangular cavity mode pattern for the TE;;; mode.
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X 4

FIG. 4-6. A partially di-
electric-filled rectangular
a waveguide.

stored in the dielectric and the losses are dissipated in the conducting
walls.

4-6. Partially Filled Waveguide.! Consider a waveguide that is
dielectric filled between = O and & = d (or has two dielectrics). This is
illustrated by Fig. 4-6. The problem contains two homogeneous regions,
0 <z<dand d <z <a Such problems are solved by finding solu-
tions in each region such that tangential components of E and H are con-
tinuous across the common boundary. An attempt to find modes either
TE to z or TM to z will prove unsuccessful, except for the TE,,, case.
Most modes are therefore hybrid, having both E, and H,. An attempt
to find modes TE or TM to = will prove successful, as we now show.

For fields TM to z, we choose ¢’s in each region (region 1 is z < d,
region 2 is £ > d) to represent the  component of A, as in Eq. (4-29).
The field in terms of the ¥’s is then given by Egs. (4-30). To satisfy the
boundary conditions at the conducting walls, we take

QU

b Y

. nmw ,
Y1 = C) cos k. sin —b—y ez

nry (4-41)
Y2 = C: o8 [kz2(a — )] sin 5 ¢

with » =1, 2, 83, . ... It has been anticipated that k, = nr/b and
k. must be the same in each region for matching tangential E and H at
z = d. The separation parameter equations in the two regions are

2
kzlz + ('%7"> + kzz = klz = O)zélll-l
nr\2 (4-42)
koo? + (T) T k2 = ko? = wleuq

1L. Pincherle, Electromagnetic Waves in Metal Tubes Filled Longitudinally with .

Two Dielectrics, Phys. Rev., vol. 66, no. 5, pp. 118-130, 1944,
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From Egs. (4-30) and (4-41) we calculate

1 nr . Yy _a.

Ey; =~ Cikzy %r sin k.1z cos < ¢ Ik
1 nr . Y ..
B, = o Cakaz 3 Sin [kze(a — z)] cos 5 ¢ e

B, = 1 Cik.1k, sin knz sin "—L;)—r—y i
wey

Eu = — == Cokuak, sin [kua(a — 2)] sin "2 g
wez

Continuity of E, and E, at £ = d requires that

l Clkzl gin k;ﬂd = - E_]; Czkzz sin [kzz(a - d)] (4‘43)
€1

Similarly, from Eqgs. (4-30) and (4-41) we calculate

H, = —jk.C1cos bz sin 1%/ ek

Hy,, = —jk,C; cos [k.2(a — z)] sin 1%/ eIkt

nr nry .
H,y = 'y C1 cos kz1x cos —by g2

H, = %’r C; cos [ks2(a — )] cos r_z%g g

Continuity of H, and H, at z = d requires that
C1 ¢0s koid = C; cos [keo(a — d)] (4-44)
Division of Eq. (4-43) by Eq. (4-44) gives

kot pon kod = — %22 tan [kua(a — d)] (4-45)

€1 €2

Both k.1 and k.; are functions of k., by Eqgs. (4-42); so the above is a
transcendental equation for determining possible k.’s (mode-propagation
constants). Once the desired k, is found, k. and k.. are given by Egs.
(4-42), and the ratio C»/C; is given by Eq. (4-43) or Eq. (4-44).

For fields TE to z, we choose ¢’s in each region to represent the z com-
ponent of F. To satisfy the boundary conditions at the conducting walls,
we take

Y1 = Cysin k.1z cos n%y e
(4-46)

Y2 = Cysin [k2(@ — z)] cos n%y g%
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withn =0, 1,2, . ... The separation parameter equations are again

Eqs. (4-42). The field is calculated from the y’s by Egs. (4-32). A

matching of tangential E and H at # = d yields the characteristic equation
Bt ot band = — B2 cot, [hrua(a — d)] (4-47)
31 K2

The k.; and k.2 are functions of k., by Eqs. (442); so the above is a

transcendental equation for determining %.’s for the modes TE to z.

The modes of the partially filled rectangular waveguide are distorted
versions of the TEx and TMz modes of Sec. 4-4. The mode patterns are
similar to those of Fig. 4-4, except that the field tends to concentrate in
the material of higher ¢ and 4. In the lossless case, the cutoff frequencies
(ks = 0) of the various modes will always liec between those for the corre-
sponding modes of a guide filled with a material e;, p;, and those-of a
guide filled with a material e;, uo. (This can be shown by the perturba-
tional procedure of Sec. 7-4.) In contrast to the filled guide, the cutoff
frequencies of the corresponding TEz and TMz modes will be different.
Also, a knowledge of the cutoff frequencies of the partially filled guide is
not sufficient to determine k, at other frequencies by Eq. (4-26). We
have to solve Eqs. (4-45) and (4-47) at each frequency.

Of special interest is the dominant mode of a partially filled guide.
For b > a, this is the mode corresponding to the TMzo; mode of the
empty guide, which is also the TEo; mode of the empty guide. For a
given n, Eq. (4-45) has a denumerably infinite set of solutions. We shall
let m denote the order of these solutions, as follows. The mode with the
lowest cutoff frequency is denoted by m = 0, the next mode by m =1,
and so on. This numbering system is chosen so that the TMz,., partially
filled waveguide modes correspond to the TMz,,, empty-guide modes.
The dominant mode of the partially filled guide is then the TMzo; mode
when b > a. Hence, the propagation constant of the dominant mode is
given by the lowest-order solution to Eq. (4-45) when the k.'s are given
by Eqs. (4-42) with n = 1. Figure 4-7 shows some calculations for the
case € = 2.45¢.

When £, is not very different from ks, we should expect k.: and k..
to be small (k, is zero in an empty guide). If this is so, then Eq. (4-45)
can be approximated by .

kold  —kota — d)

€1 €2

(4-48)

With this explicit relationship between k,; and k-2, we can solve Egs.
(4-42) simultaneously for k.; and k, (given w). Note that when k., is
real, k., is imaginary, and vice versa. The cutoff frequency is obtained
by setting k. = 0 in Eqs. (4-42). Using Eq. (4-48), we have for the
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Fra. 4-7. Propagation constant for a rectangular waveguide partially filled with
dielectric, ¢ = 2.45¢, a/b = 0.45, d/a = 0.50. (After Frank.)

dominant mode

2
k..® + (%) = 21

— 2
&od ka? 4 (7-1;) = wleu,

61((l - Ci)
These we solve for the cutoff frequency w = w., obtaining
T e(a — d) + ed 449
=0 \/El(a — d)espz + exderp ( )
valid when Eq. (4-48) applies. When py = p; = g, this reduces to
wo =T \/—fl(“ —d) + ed (4-50)
b ue€d

Note that this is the equation for resonance of a parallel-plate trans-
mission line, shorted at each end, and having

€1€2
L=p C=m—dTead
per unit width. All cylindrical (cross section independent of z) wave-
guides at cutoff are two-dimensional resonators.

A waveguide partially filled in the opposite manner (dielectric boundary
parallel to the narrow side of the guide) is the same problem with a > .
The dominant mode of the empty guide is then the TEz,, mode, or TE;,
mode. The dominant mode of the partially filled guide will also be a
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TEz mode; so the eigenvalues are found from Eq. (4-47) with n = 0.
We shall order the modes by m as follows. That with the lowest cutoff
frequency is denoted by m = 1, that with the next lowest by m = 2, and
so on. This numbering system corresponds to that for the empty guide,
the dominant mode being the TEz1o mode. When £, is not too different
from k., we might expect k.: and k., to be close to the empty-guide value
k. = w/a. An approximate solution to Eq. (4-47) could then be found
by perturbing k., and k., about v/a. For the cutoff frequency of the

a
r(—-d—bi
Zo=m | Zy =n2
T B="rh | B=k
+
b 1,11 €2,/2 I |
*
_Jn_ / k—d—f—a-a—

(@ ®

Fie. 4-8. (a) Partially filled waveguide; (b) transmission-line resonator. The cutoff
frequency of the dominant mode of (@) is the resonant frequency of (b).
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Fia. 4-9. Propagation constant for a rectangular waveguide partially filled with
dielectric, ¢ = 2.45¢0. (After Frank.)
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F16. 4-10. The dielectric- . €0,k0
slab waveguide.
7
€d,4d
// a / /,
/ / z

ke = kit = wolei
kzo? = kot = WolEopa

dominant mode, Eqs. (4-42) become

and Eq. (4-47) becomes
L ot kad = — L cot [haula — )] (4-51)
71 n2

It is interesting to note that this is the equation for resonance of two short-
circuited transmission lines having Z¢’s of 71 and 5,, and §’s of k1, and ks,
ag illustrated by Fig. 4-8. The reason for this is, at cutoff, the TEz,
mode reduces to the parallel-plate transmission-line mode that propagates
in the z direction. This viewpoint has been used extensively by Frank.!

Some calculated propagation constants for the dominant mode are
shown in Fig. 4-9 for the case ¢ = 2.45¢. Similar results for a centered
dielectric slab are shown in Fig. 7-10, and the characteristic equation for
that case is given in Prob. 4-19.

4-7. The Dielectric-slab Guide. It is not necessary to have con-
ductors for the guidance or localization of waves. Such phenomena also
occur in inhomogeneous dielectrics. The simplest illustration .of this
is the guidance of waves by a dielectric slab. The so-called slab wave-
guide is illustrated by Fig. 4-10.

We shall consider the problem to be two-dimensional, allowing no
variation with the y coordinate. It is desired to find z-traveling waves,
that is, e~ variation. Modes TE and TM to either  or z can be found,
and we shall choose the latter representation. For modes TM to z, Egs.
(3-86) reduce to
_ kz é‘l_’ 1

- * (rz_ L2 __% ~
we 0% E, Jwe (& k2 Hy oz (4-52)

E. =

We shall consider separately the two cases: (1) ¥ an odd function of z,
denoted by y¢°, and (2) ¥ an even function of z, denoted by ¢°. For case

! N. H. Frank, Wave Guide Handbook, MIT Rad. Lab. Rept. 9, 1942.
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(1), we choose in the dielectric region

Ve = Asinugee |z <§ (4-53)
and in the air region

Bev7g—kz z >

Vo :
2 (4-54)

Yo° = —Berreihz < — 2

2

We have chosen k.; = w and k.o = jv for simplicity of notation. (It will
be seen later that u and v are real for unattenuated wave propagation.)
The separation parameter equations in each region become

u? + k. = k? = ol

—02 + k2 = ko? = weoo (4-55)

Evaluating the field components tangential to the air-dielectric interface,
we have

A . ,
= — u?sin ux ¢ 7%=

E a
P Jwe =) < 5
H, = — Au cos uzx e 7=
H, = Buevi=lg—s [z > g
— ) a
Ez = — vze—vze—:k,s > =
Jweg 2
B )
B, = —— vl z< —2
Jweg 2

Continuity of E, and H, at x = +a/2 requires that

4 u?sin o = -8 v2e—vei?
€4 2 €0
ua
Au cos 5 = — Bye—vei2

The ratio of the first equation to the second gives

ua UG _ € va
tan o = = =

2 2 € 2 (4-56)

This, coupled with Eqgs. (4-55), is the characteristic equation for deter-
mining %,’s and cutoff frequencies of the odd TM modes, ’
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For TM modes which are even functions of z, we choose

Va° = A cos uzx e~ Jz| <
(4-57)

e NI

tpac _ Be—vlzle—jk,z Izl >

The separation parameter equations are still Eqs. (4-55). The field com-
ponents are still given by Egs. (4-52). In this case, matching E, and
H,at z = ta/2 yields
ua ua _ e )
"2—001';? = ) (4 58)
This is the characteristic equation for determining the k.,’s and cutoff
frequencies of the even TM modes.

There is complete duality between the TM and TE modes of the slab
waveguide; so the characteristic equations must be dual. For the TE
modes with odd ¢ we have

ua, UG _ pava (4-59)

2 an 2 2
as the characteristic equation, and for the TE modes with even ¢ we have

_ue e pave ]

5 cot 5 e (4-60)
as the characteristic equation. The u’s and v’s still satisfy Egs. (4-55).
The odd wave functions generating the TE modes are those of Eqgs. (4-53)
and (4-54), and the even wave functions generating the TE modes are
those of Egs. (4-57). The fields are, of course, obtained from the ¢’s by
equations dual to Eqgs. (4-52), which are, explicitly,

k. oy 1

= —22% = = (k2 — .2
wp 90T H. Jou (k k") E,

gl

= (4-61)
These are specializations of Egs. (3-89).

The concept of cutoff frequency for dielectric waveguides is given a
somewhat different interpretation than for metal guides. Above the
cutoff frequency, as we define it, the dielectric guide propagates a mode
unattenuated (k. is real). Below the cutoff frequency, there is attenu-
ated propagation (k. = 8 — ja). Since the dielectric is loss free, this
attenuation must be accounted for by radiation of energy as the wave
progresses. Dielectric guides operated in a radiating mode (below cutoff)
are used as antennas. The phase constant of an unattenuated mode lies
between the intrinsic phase constant of the dielectric and that of air;
that is,

ke <k, <ky
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This can be shown as follows. Equations (4-55) require that u and » be
either real or imaginary when %, is real. The characteristic equations
have solutions only when v is real. Furthermore, » must be positive,
else the field will increase with distance from the slab [see Egs. (4-54) or
(4-57)]. When v is real and positive the tharacteristic equations have
solutions only when u is also real. Hence, both u and v are real, and it
follows from Eqs. (4-55) that ko < k, < k,. This result is a property of
cylindrical dielectric waveguides in general.

The lowest frequency for which unattenuated propagation exists is
called the cutoff frequency. From the above discussion, it is evident that
cutoff occurs as k. — ko, in which case v — 0. The cutoff frequencies
are therefore obtained from the characteristic equations by setting
% = Vks? — ke*and v = 0. The result js

tan (g \/kdz - k02> =0 cot (g ’\/]C,_-zz - k02> =0

which apply to both TE and TM modes. These equations are satisfied
when

g,\/kdz_k()z:%r ’I‘L-—'=0,1,2,..,

This we solve for the cutoff wavelengths

— 20 feaps - '
"°‘n\/e.,m, 1 n=0,1,2 ... (4-62)

and the cutoff frequencies

_ n
2a \/Ed#d ~~ €ofto

The modes are ordered as TM, and TE, according to the choice of n in
Eqs. (4-62) and (4-63). Note that f. for the TE, and TM, modes is zero.
In other words, the lowest-order TE and TM modes propagate unattenuated
no matter how thin the slab. This is a general property of cylindrical
dielectric waveguides; the cutoff frequency of the dominant mode (or
modes) is zero. However, as the slab becomes very thin, k, — k; and
v— 0, so the field extends great distances from the slab. This charac-
teristic is considered further in the next section. Finally, observe from
Eq. (4-62) that when eguq >> eouo, the cutoffs occur when the guide width
is approximately an integral number of half-wavelengths in the dielectric,
zero half-wavelength included.

Simple graphical solutions of the characteristic equations exist to
determine k. at any frequency above cutoff. Let us demonstrate this

£ n=012 ... (4-63)
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for the TE modes. Elimination of %, from Eqgs. (4-55) gives
u? 4 v2 = kg? — ko? = w?(eapa — eopo)
Using this reiationship, we can write the TE characteristic equations as

Lo UQ ua

— & tan 3 5
b 2 ? = \/ (9_‘}) (eapa — €opo) — (%)
to ua ua 2
;; —2— cot —2—
Values of ua/2 for the various modes are the intersections of the plot
of the left-hand terms with the circle specified by the right-hand term.
Figure 4-11 shows a plot of the left-hand terms for pg = po. A repre-
sentative plot of the right-hand term is shown dashed. As w or e is
varied, only the radius of the circle changes. (For the. case shown, only
three TE modes are above cutoff.) If pa # ko, the solid curves m.usT; be
redrawn. The graphical solution for the TM mode eigenya,lues is similar.
Sketches of the mode patterns are also of interest. Figure 4—12 shows
the patterns of the TE, and TM; modes. These can also be lnterp.reted
as the mode patterns of the TM, and TE, modes if & and 3¢ are inter-
changed, for there is complete duality between the TE and TM cases.
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Fia. 4-11. Graphical solution of the characteristic equation for the slab waveguide.
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Fia. 4-12. Mode patterns for the dielectric-slab waveguide. (a¢) TE; mode (% lines
dashed); (b)) TM, mode (& lines solid).

As the mode number increases, more loops appear within the dielectrie,
but not in the air region.

4-8. Surface-guided Waves. We shall show that any “reactive
boundary’” will tend to produce wave guidance along that boundary.
The wave impedances normal to the dielectric-to-air interfaces of the
slab guide of Fig. 4-10 can be shown to be reactive. A simple way of
obtaining a single reactive surface is to coat a conductor with a dielectric
layer. This is shown in Fig. 4-13.

The modes of the dielectric-coated conductor are those of the dielectric

slab having zero tangential E over the z = 0 plane. These are the T™,, .

n =024, ..., 6 modes (odd ¢) and the TE,, n = 1, 3,5, ... ,modes
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(even ¢) of the slab. We shall retain the same mode designations for the
coated conductor. The characteristic equations for the TM modes of
the coated conductor are therefore Eq. (4-56) with ‘a/2 replaced by ¢
(coating thickness). The characteristic equation for the TE modes is
Eq. (4-60) with a/2 replaced by t. The cutoff frequencies are specified
by Eq. (4-63), which, for the coated conductor, becomes

n

fo= —— (4-64)

4tV eapa — eopo
where for TM modes n = 0, 2, 4, . . . , and for TE modes » = 1, 3,
5, . ... The dominant mode is the TM, mode, which propagates

unattenuated at all frequencies. The mode pattern of the TM, mode
is sketched in Fig. 4-14.

Let us consider in more detail the manner in which the dominant mode
decays with distance from the boundary. In the air space, the field
attenuates as ¢e=*=. For thick coatings, k. — ks, and, from Eq. (4-55),

“are _ 4 (4-65)

V—> Ky
t large €00

This attenuation is quite large for most dielectrics. For example, if the
coating is polystyrene (e; = 2.56eo, 1a = po), the field in 0.12) has decayed
to 36.8 per cent of its value at the surface. However, for thin coatings,

X

0,0

Fia. 4-13. A dielectric-coated conductor.
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Fra. 4-14. The TM, mode pattern for the coated conductor (& lines solid.)
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Fig. 4-15. A corrugated conductor.

the field decays slowly. In this case, k., — ko, and

[ AW
v —> ko (lTo - :d) X (4-66)

If the polystyrene coating were 0.0001 wavelength thick, we would have
to go 40 wavelengths from the surface before the field decays to 36.8 per
cent of its value at the surface. We say that the field is “tightly bound ”’
to a thick dielectric coating and ‘““loosely bound” to a thin dielectric
coating.

Another way of obtaining a reactive surface is to “corrugate’ a con-
ducting surface, as suggested by Fig. 4-15. For a simple treatment of
the problem, let us assume that the “teeth’ are infinitely thin, and that
there are many slots per wavelength. The teeth will essentially short
out any E,, permitting only E, and E, at the surface. The TM fields of
the dielectric-slab guide are of this type; hence we shall assume that this
field exists in the air region. Extracting from Sec. 4-7, we have

B =Fp,
weg
= T_‘? vze—uze—ik,: z > d
Jwég
H, = Bvevz¢—i*s

where =02+ k.2 = ko® = wleouo (4-67)

The wave impedance looking into the corrugated surface is

=L _ g
Z_, = H, ~ we (4-68)
Note that this is inductively reactive; so to support such a field, the
interface must be an inductively reactive surface. (The TE fields of
Sec. 4-7 require a capacitively reactive surface.) In the slots of the
corrugation, we assume that the parallel-plate transmission-line mode
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exists. These are then short-circuited transmission lines, of character-
istic wave impedance 70. Hence, the input wave impedance is

Z_; = j?]o tan kod (4—69)

For kod < w/2, this is inductively reactive. Equating Eqgs. (4-68) and
(4-69), we have
v = ko tan kod (4-70)

and, from Eq. (4-67), we have

k, = ko vV 1 + tan? kod (4—71)

It should be pointed out that this solution is approximate, for we have
only approximated the wave impedance at z = d. In the true solution,
the fields must differ from those assumed in the vicinity of z = d. (We
should expect E, to terminate on the edges of the teeth.)

When the teeth are considered to be of finite width, an approximate
solution can be obtained by replacing Eq. (4-69) by the average wave
impedance. This is found by assuming Eq. (4-69) to hold over the gaps,
and by assuming zero impedance over the region occupied by the teeth.

The result is?
2
. g 2
k, =~ ko\/l + <g T t) tan? kod

where g = width of gaps and { = width of teeth.

While at this time we lack the concepts for estimating the accuracy
of the above solution, it has been found to be satisfactory for small
kod. Note that, from Eq. (4-70), the wave is loosely bound for very
small kod, becoming more tightly bound as kod becomes larger (but still
less than 7/2). The mode pattern of the wave is similar to that for the
TM, coated-conductor mode (Fig. 4-14), except in the vicinity of the
corrugations.

4-9. Modal Expansions of Fields. The modes existing in a waveguide
depend upon the excitation of the guide. The nonpropagating modes

- are of appreciable magnitude only in the vicinity of sources or discon-

tinuities. Given the tangential components of E (or of H) over a wave-

- guide cross section, we can determine the amplitudes of the various wave-

guide modes. This we shall illustrate for the rectangular waveguide.
Consider the rectangular waveguide of Fig. 2-16. Let E, = 0 and
E, = f(z,y) be known over the z = 0 cross section. We wish to deter-
mine the field z > 0, assuming that the guide is matched (only outward-
traveling waves exist). The TEz modes of Sec. 4-4 have no E.; so let us

1 C. C. Cutler, Electromagnetic Waves Guided by Corrugated Conducting Surfaces,
Bell Telephone Lab. Rept. MM-44-160-218, October, 1944,
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take a superposition of these modes. This is

¥ = Ay sin %” cos n—?/ € Ymn® 4-72)

m=1n=0

where A, are mode amplitudes and the ynn are the mode-propagation
constants, given by Eq. (4-23). In terms of ¢, the field is given by Egs.
(4-32). In particular, E, at z = 0 is given by

« w©

. mrz nar
= Ymndma SID —= cos nry
220 a b
m=1n=0

E,

Note that this is in the form of a double Fourier series: a sine series in z
and a cosine series in y (see Appendix C). It is thus evident that YmnAma
are the Fourier coefficients of E,, or

, 26,, a b
'YmnAmn = Emn = E[) dx/(; dy Eu

where e, = 1forn = Qand e, = 2for n > 0 (Neumann’s number). The
A s, and hence the field, are now evaluated. The solution for E, = flz,y)
and E, = 0 given over the z = 0 cross section can be obtained from the
above solution by a rotation of axes. - The general case for which both
E, and E, are given over the z = 0 cross section is a superposition of the
two cases B, = 0 and B, = 0. The solution for the case H, and H,
given over the z = 0 cross section can be obtained in a dual manner.

For a large class of waveguides, when many modes exist simultaneously,
each mode transmits energy as if it existed alone. We shall show that
the rectangular waveguide has this property. Given the wave function
of Eq. (4-72), specifying a field according to Egs. (4-32), the z-directed
complex power at z = 0 is

in M Y 4
, S~ cos — (4-73)

z=

a ]
P= //ExH*-u,ds= —/ dx/ dy [EyHZ]mo
o 0
z2=(
a b
=/ d:c/ dy[ZEm,.sinmcosw]
0 0 a b

m,n

* sin P72 oos 7Y
pr E3, sin 2 %3

Xz’i‘@

Because of the orthogonality relationships for the sinusoidal functions,
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Fic. 4-16. A capacitive waveguide junction.

this reduces to

P = 2 z (Yo):n!EmnP% (4-74)

m=1n=0

where (Y o)mn are the TEz wave admittances, given by' the reciprocal of
Egs. (4-36). The above equation is simply a summation of the powers
for the individual modes. In a lossless guide, the power for a propagating
mode is real and that for a nonpropagating mode is imaginary.

To illustrate the above theory, consider the waveguide junction of Fig.
4-16. The dimensions are such that only the dominant mode (TE,o)
propagates in each section. Let there be a wave incident on the junc-
tion from the smaller guide, and let the larger guide be matched. For
an approximate solution, assume that E, at the junction is that of the

incident wave

E,

. T
~ s E‘ y<e (4_75)
z=0 0 Y > e

From Eq. (4-73), the only nonzero mode amplitudes are

Ey = ’YloAm =

[~ 2TV

9 (4-76)
. mwe
Eln = 'YlnAln = 7T1rsln T
Thus, only the m = 1 term of the m summation remains in Eq. (4-72).
Let us use this solution to obtain an “aperture admittance’ for t}le
junction. From Egs. (4-74) and (4-76), the complex power at z = O is

P =%+ 22 (Yo, [%“

where, from Egs. (4-36),

k2 — (x/a)r _ V1= (/)
(YO)].U = w}l-ﬁ - 7

v _k* = (x/a)* — J2b(Y 0)10
Yo = =5 A V2 — (26/0,)2
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F1a. 4-17. Susceptance of a capacitive aperture.

T(?e 'fc and A, are those of the TE;; mode. We shall refer the aperture
admittance to the voltage across the center of the aperture, which is
V = c¢. The aperture admittance is then ’

E3 hd .
Yo = ll;lz = (Yo)wo [% +j22 sin? (nme/b) ____
A, & (nwe/b)? \/nt — (2b/7,)?

] @77)

The imaginary part of this is the aperture susceptance

©

sin? (nwc/b)

B, =2 Z
NZo (nme/b)? \/n? — (2b/,)?

n=1

(4-78)

where A\, and Z 0 are those of the dominant mode. Calculated values for
B, are shown in Fig. 4-17. For small ¢/b, we have!

7 —
Y20 g, ~ — log ’0.6565 [1 + \/1 — (%’)2]} (4-79)

* This equation is a quasi-static result. The di ializati
| 1 . e direct specialization of Eq.
small ¢/b yields a numerical factor of 0.379 instead of 0.656. 9 (478) to
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Fig. 4-18. An inductive waveguide junction.

The aperture susceptance is a quantity that will be useful for the treat-
ment of microwave networks in Chap. 8. Note that the susceptance is
capacitive (positive); so the original junction is called a capacitive wave-
guide junction. Remember that our solution is only approximate, since
we assumed E in the aperture. (We shall see in Sec. 8-9 that the true
susceptance cannot be greater than our present solution.) We have
assumed that only one mode propagates in the guide; hence our solution is

explicit only for
i / + (2 :

When a second mode propagates, it contributes to the aperture conduct-
ance, and Eq. (4-78) would be summed from n =2 to «, and so on.

Another problem of practical interest is that of the waveguide junction
of Fig. 4-18. Again we assume only the dominant mode propagates in
each section. Take a wave incident on the junction from the smaller
guide, and let the larger guide be matched. For an approximate solu-
tion, we assume E, in the aperture to be that of the incident wave

. T
sin— £ <¢ (4-80)
0 z>c

From Egs. (4-73), we determine the only nonzero mode amplitudes as

2¢ sin (mwe/a)
7all — (me/a)7] (80)
Thus, only the n = 0 term of the » summation remains in Eq. (4-72).
Again we can find an aperture admittance for the junction. From
Egs. (4-74) and (4-81), the complex power atz = 01is

B =

2bc? * MLC@ i
P=—— z (Yo)mo[l — (mc/a)2]

rla
m=1
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where, from Egs. (4-36),
(Yo)uo = o @
wpfB

1

(Vo)mo = 2= (ma/a)? _ —j (mk

2
= wnet . _2;> -1 m > 1

The voltage across the center of the aperture is V = b. The aperture
admittance referred to this voltage is therefore

r.- 2 [dnea T o,

® " rab |1 = (c/a)?

SO Fa Y Ny s

The imaginary part of this is the aperture susceptance
-2 [ c\? sin (mwc/a) | z 2
Ba A Do \fe/ %) m a
w5 (5) 2 [P NG - (@) ww
m=2
which is plotted in Fig. 4-19. The susceptance is inductive (negative);

S0 the original junction is called an inductive waveguide junction. For
_single-mode propagation, we must have a < \; so our explicit interpre-

T
0.2 § << pap =05 f
u\ > \\t 0} TE b

2 NN 4
< NN N E=sin (mx/c) X
b% 08\ N

0.1 0.94 \\ \\\

AN
N NN
INNNS
0

0.2 0.4 0.6 038 1.0
c/a .

F1a. 4-19. Susceptance of an inductive aperture.
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tation of the solution is restricted to this range. For wave propagation
in the smaller guide, we must have ¢ > A/2 if it is air-filled. However,
if the smaller guide is dielectric-filled, we can have wave propagation in it
when ¢ < A/2. Moreover, the aperture susceptance is defined only in
terms of E, in the aperture and has significance independent of the
manner in which this E, is obtained.

4-10. Currents in Waveguides. The problems of the preceding section
might be called ““aperture excitation’ of waveguides. We shall now con-
sider “current excitation’’ of waveguides. This involves the determi-
nation of modal expansions in terms of current sheets over a guide cross
section. The only difference between aperture excitation and current
excitation is that the former assumes a knowledge of the tangential elec-
tric field and the latter assumes a knowledge of the discontinuity in the
tangential magnetic field. The equivalence principle plus duality can be
used to transform an aperture-type problem into a current-type problem,
and vice versa.

To illustrate the solution, consider a rectangular waveguide with a
sheet of z-directed electric currents over the z = 0 cross section. This is
illustrated by Fig. 3-2, where J, = u.f(z,y) is now arbitrary. We shall
assume that only waves traveling outward from the current are present,
that is, the guide is matched in both directions. Atz = 0 we must have
E., E,, and H. continuous. H_. must also be antisymmetric about z = 0;
hence it must be identically zero, and it is convenient to use the TMz
modes of Sec. 4-4. (Note that J and its images are z-directed; so it is
to be expected that an z-directed A is sufficient for representing the field.)
Superpositions of the TMz modes are

¢’+ = an+ CcOoS ﬂ? sin nT-/ry g Tmn3 2>0

m:O n: 1 (4_84)
‘Ib_ = an_ cOos % sin n;)ry gYmn? 2<0

m=0n=1

where superscripts + and — refer to the regionsz > 0 and z < 0, respec-
tively. The field in terms of the y’s is given by Eqs. (4-30). Continuity
of E, and E, at z = 0 requires that

Bupnt = B~ = Baa (4-85)
The remaining boundary condition is the discontinuity in H, caused by
J 2, which is

nry

Je = [Hy — Hfloo = 2¥mnBumn COS an sin —=

m=0n=]}
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This is a Fourier cosine series in z and a Fourier sine series in y. It is
evident that 2ym.Bnm, are the Fourier coefficients of J., that is,
a b
VB = Tn = 2o A dz A dy J. cos "2 sin "V (4.86)

This completes the determination of the field. The solution for a
y-directed current corresponds to a rotation of axes in the above solu-
tion. When both J, and J, exist, the solution is a superposition of the
two cases J, = Oand J. = 0. The solution for a magnetic current sheet
in the waveguide is obtained in a dual manner. A z-directed electric
current can be treated as a loop of magnetic current in the eross-sectional
plane, according to Fig. 3-3. A z-directed magnetic current is the dual
problem. Thus, we have the formal solution for all possible cases of
currents in a rectangular waveguide.

It is also of interest to find the power supplied by the currents in a
waveguide. This is most simply obtained from

P= —f/E-Jj‘ds= —fo“dxfo”dyJ:E,

z2=0

z=0

We express J; in its Fourier series and evaluate E, by Eqgs. (4-30) applied
to the above solution. Because of the orthogonality relationships, the
power reduces to

P = z Z (Z°)’""|J"‘",2:_e_l,),. (4-87)

m=0n=1

where (Zo)m. are the TMz wave impedances, given by Egs. (4-35).
This is a summation of the powers that each J,., alone would produce
in the guide. In a lossless guide, the power associated with each propa-
gating mode is real, and that associated with a nonpropagating mode is
imaginary.

As an example of the above theory, consider the coax to waveguide
junction of Fig. 4-20. This is a waveguide “probe feed,” the probe
being the center conductor of the coax. If the probe is thin, the current
on it will have approximately a sinusoidal distribution, as on the linear
antenna. With the probe joined to the opposite waveguide wall, as
shown in Fig. 4-20, the current maximum is at the joint z = a. We
therefore assume a current on the probe

I(z) =~ cos k(a — z) (4-88)

The current sheet approximating this probe is

Je = I(z)8(y — c) (4-89)

e re—a—y
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Fic. 4-20. A coax to waveguide junction.

where 3(y — ¢) is the impulse function, or delta function (see Appendix
C). The Fourier coefficients for the current are then obtained from
Eq. (4-86) as
2enka sin ka sin nwe/b
o 4-90
b[(ka)? — (mm)? ( )

Jmn =

This, coupled with our earlier formulas, determines the field.

In terms of this solution, let us consider the input impedance seen by
the coaxial line. The power supplied by the stub is given by Eq. (4-87).
The impedance seen by the coax is then

P

% g

= Ri + X,

where, from Eq. (4-88), the input current is

I; = cos ka

Assume that the waveguide dimensions are such that only the TEq; mode
propagates. Then only the m = 0, n = 1 term of Eq. (4-87) is real, and

2
R =222 (290
2
- F @ (P50 s (s-91)

All other terms of the summation of Eq. (4-87) contribute to X;. How-
ever, since we assumed a filamentary current, the series for X; diverges.
To obtain a finite X,, we must consider a conductor of finite radius. For
small a, the reactance will be capacitive. In the vicinity of a = A/4,
we have a resonance, above which the reactance is inductive. Note that
Eq. (4-91) says that the input resistance is infinite at this resonance.
This is incorrect for an actual junction, and the error lies in our assumed
current, Equation (4-91) gives reliable input resistances only when we
are somewhat removed from resonant points. [This is similar to our
linear antenna solution (Sec. 2-10)]. Feeds in waveguides with arbi-
trary terminations are considered in Sec. 8-11.
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Fi1a. 4-21. A parallel-plate guide radiating into half-space.

4-11, Apertures in Ground Planes. We have already solved the prob- -

lem of determining the field from apertures in ground planes, in Sec. 3-6.
At this time, however, we shall take an alternative approach and obtain
a different form of solution. By the uniqueness theorem, the two forms
of solution must be equal. One form may be convenient for some calcu-
lations, and the other form for other calculations.

Let us demonstrate the theory for an aperture in the ground plane
y = 0, illustrated by Fig. 4-21. We further restrict consideration to the
case E, = 0, there being only an E, in the aperture. Taking a clue from
our waveguide solution (Sec. 4-9), let us consider Fourier transforms (see
Appendix C). The transform pair for E. over the y = 0 plane is

Bu(z,02) = %L, f dk, f " b, Bo(ls o)

_ o - (4-92)
E (ks k) = / dz / dz E.(z,0,2) e *ezg—¥a

where a bar over a symbol denotes transform. The form of the trans-
formation suggests that we choose as a wave function

1 w© w©
V=1n / _ / _ Gk f(kayheo e velton (4-93)

which is a superposition of the form of Eq. (4-9). For our present prob-
lem, we take Eq. (4-93) as representing a field TE to 2, according to
Eqgs. (3-89). There is a one-to-one correspondence between a function
and its transform; hence it is evident that the transform of ¢ is

¥ = f(kzk) e (4-94)
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We also can rewrite Eqgs. (3-89) in terms of transforms as

_ . - —kk,
E.=—jky H.= Gon v
E, = jky A, = ——“k"k'.; (4-95)
v JEz v jw#
_ _ 2 __ 2
Ez = 0 HZ = k hy k’ %
Jou

Specializing the above to the ¥ = 0 plane, we have
Ez |y=0 = _jkvf(kzykz)
A comparison of this with Egs. (4-92) shows that
Flonks) = :k_1 Bo(hake) (4-96)
Jity
where E, is given by the second of Egs. (4-92). This completes the solu-
tion. As a word of caution, k, = + Vk? — k2 — k. is double-valued,

and we must choose the correct root. For Eq. (4-94) to remain finite as
y — «, we must choose

e i VEEF k2 — & k< AVEE+ K2 (4-97)
v — AV =k — k2 k> AVESE+E?

The minus sign on the lower equality is necessary to remain on the
same branch as designated by the upper equality.

The extension of this solution to problems in which both E. and E,
exist over the y = 0 plane can be effected by adding the appropriate TE
to z field to the above TE to z field. It can also be obtained as the sum
of fields TE and TM to 2, or to z, or to y. The case of H. and H, speci-
fied over the y = O plane is the dual problem and can be obtained by
an interchange of symbols.

For simplicity, we shall choose our illustrative problems to be two-
dimensional ones. Let Fig. 4-21 represent a parallel-plate waveguide
opening onto a ground plane. If the incident wave is in the transmission-
line mode (TEM to y), it is apparent from symmetry that H, will be the
only component of H. Let us therefore take H, as the scalar wave func-
tion and construct

Ho= g [ edeesns . (+-98)

From this, it is evident that the transform of H. is
H, = f(ks)e#w (4-99)
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From the field equations, we relate the transform of E to H, as

E = ky H E,=- k. H, (4-100)
we we
Specializing E, to y = 0, we have
E, ks i) = / ® E.(0,0)e = dp (4-101)
y=0  WE —w

from which f(k.) may be found. For an approximate solution to Fig.
4-21 for y > 0, we assume E, in the aperture to be of the form of the
incident mode, that is,

1zl < g
E.| = (4-102)
¥=0 0 jz| > g
Using this in Eq. (4-101), we find
B =% 2 f(ks) = sm (k g) (4-103)
Y =0

To complete the solution, we must also choose the root of k, for proper
behavior as y — . From Eq. (4-99), it is evident that this root is

k {j\/kﬁ—k? k< |k,
v=

N 4-104
~VEZEE k> |kl (+-104)

The fields are found from the transforms by inversion.

A parameter of interest to us in future work is the aperture admittance.
To evaluate this, we shall make use of the integral form of Parseval’s
theorem (Appendix C), which is

[t =L [ e«

We can express the power per umt width (z direction) transmitted by
the aperture as

- /_” [B.H¥mods = — 51; /_'” (B ¥y dk.

From Eqs. (4-100) and (4-102), this becomes

- € 4 [~ sin? (k,a/2)
P "'_'/ k* |Eldk ﬂ/_wwdk

PLANE WAVE FUNCTIONS 183

4
4 3
ALY e AE
3
L] Te=11
Fia. 4-22. Aperture ad- 2 N \\\ ]
mittance of a capacitive \ NG,
slot radiator. A B, ~ L
1
\\
0 0.2 04 06 0.8 1.0
a/A

We now define the aperture admittance referred to the aperture voltage
V =aas

P* —4 [= sin? (k.a/2)
Y"=W=Ana2f.. e ar,

Note that, by Eq. (4-104), the above integrand is real for |I_c,| < k and
imaginary for |k.| > k. We can therefore separate Y, into its real and

imaginary parts as

4 k  sin? (k.a/2)
Ga Ma2/,,k2\/k2—k2

4 sin? (k.a/2)
B ) s vie=r®

The above integrals can be simplified to give

N ka/2 sin? w dw
e A w /ka/2)* — w?

. (4-105)
"B, = 2 / sin? w dw
K tosa WP /0 = (Ra]2)"
For small ka, these are!
N _ (ka)?
Mnle = = [1 24 2 <01 (4-106)
MB, =~ 3.135 — 2log ka

For int;ermediate ka, the aperture conductance and susceptance are
plotted in Fig. 4-22. For large ka, we have

1 The formula for B, is a quasi-static result. The direct spgcialization of the
second of Eqs. (4-105) to small ke gives a numerical factor of 4.232 instead of 3.135.
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The aperture is capacitive, since B, is always positive.

Another problem of practical interest is that of Fig. 4-21 when the
incident wave is in the dominant TE mode (TE to y). In this case,
E, will be the only component of E, and we shall take E, as our sealar
wave function. Analogous to the preceding problem, we construct

1 © -
Es = E /— - f(kz)elk‘ze’k"” dkz - (4—108)
In terms of Fourier transforms, this is
E, = f(k.)erw (4-109)
From the field equations, we find the transform of H to be
7 _ —ky = 5 ks =
H: - wp Ez Hy = EE: (4—110)

The f(k:) is evaluated by specializing Eq. (4-109) to y = 0, which gives
E, Iy=-0 = f(k:) = / _: E (x,0)e~*= dg (4-111)

For an approximate solution, we assume the E, in the aperture of Fig.
4-21 to be that of the incident TE mode, that is,

cos1—raE [z] < g
E, o= N (4-112)
0 IZ[ > §

Substituting this into the preceding equation, we find

2ma cos (k.a/2)
w2 — (k.a)?

The choice of the root for k, is the same as in the preceding example,
given by Eq. (4-104). This completes the formal solution.

Let us again calculate the aperture admittance. The power trans-
mitted by the aperture is

E, o = Jk) = (4-113)

y=

P= / EHo 0z = o /_” (BB ¥,0 db

where we have used Parseval’s theorem. From Egs. (4-110) and (4-1 13)‘,
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F1a. 4-23. Aperture admittance of an inductive slot radiator.

this becomes

-1 f= _ —2ra? = k% cos? (k.a/2)
Pk [ miEpa = 222 [T R

T 2nop [-—w

We shall refer the aperture admittance to the voltage per unit length of
the aperture, which is V' = 1. This gives

P* _ —2ra* (= k,cos® (k.0/2) .
Yo 170 = "au f-m e — (b 2

The integrand is real for k.| < k and imaginary for |k.| >-k. A separation
of Y, into real and imaginary parts is therefore accomplished in the same

manner as in the preceding example. The result is

— 2
1 [#%/2 7/ (ka/2)? — w?® cos L

. =2
S P ()RR w114)
- A/ w? — 2)%cos?w
;Ba = '71 _/I;a/2 w[(,’r/fz()k;a/_ )w2]2 dw
For small ka, we have
: 2 (a\?
™ <X> 2 <01 (4-115)

G, =
B, =

—0.194

¥l s

For intermediate ka, the aperture conductance and susceptance are
plotted in Fig. 4-23. For large ka,

10 ~ % ¢ 4-116)
R U (
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and B, is negligible. The aperture is inductive since B, is always
negative.

4-12, Plane Current Sheets. The field of plane sheets of current can,
of course, be determined by the potential integral method of Sec. 2-9.
We now reconsider the problem from the alternative approach of con-
structing transforms. The procedure is similar to that used in the pre-
ceding section for apertures. In fact, if the equivalence principle plus
image theory is applied to the results of the preceding section, we have
complete duality between apertures (magnetic current sheets) and elec-
tric current sheets. However, rather than taking this short cut, let us
follow the more circuitous path of constructing the solution from basic
concepts.

Suppose we have a sheet of z-directed electric currents over a portion
of the y = 0 plane, as suggested by Fig. 4-24. The field can be expressed
in terms of a wave function representing the z-component of magnetic
vector potential. (This we know from the potential integral solution.)
The problem is of the radiation type, requiring continuous distributions
of eigenvalues. We anticipate the wave functions to be of the transform
type, such as Eq. (4-93). From Egs. (3-86), we have the transforms of
the field components for the TM to z field, given by

7 N ] —kzkz

H. = jkg E: = ]T ¥

A, = —jod B, ="Dky (4-117)
Y i VT e

_ _ 2 _ L2

H; = 0 2 = k—£¢

Jowe

PLANE WAVE FUNCTIONS 187
These are dual to Eqs. (4-95). We construct the transform of ¢ as

lllf'- = f+(k3;kz)ej.k"t” y > 0 (4.-118)
v = f(koko)e Y y<0
For the proper behavior of the fields at large lyll,‘we must choose k%,
as in Eq. (4-97), and k,~ as the other root. That is,

iIVERFEE R B<VEI LR g

k"+ N _k"_ N { - ‘\/kz - k=2 - kzz k> \/kzz + kzz

Our boundary conditions at the current sheet are continuity of E. and
E,, and a discontinuity in Ho, according to Eq. (1-86). The b(?u'nda,ry
condition on E. and E, leads to f* = f~, and the boundary condition on
H, then leads to

FHlene) = FChuk) = 5. (4-120)

where J,, the transform of J, is
Jo (ko k) = f _w f _w J . (z,2) e 2 dx dz (4-121)

This completes the determination of the field transforms. The field is
given by the inverse transformation. '

Our two solutions (potential integral and transform) plus the unique-
ness theorem can be used to establish mathematical identities. For
example, consider the current element of Fig. 2-21. The potential inte-

gral solution is A = u.y where

Dl
V= i (4-122)

r=A2+ ¢+ 2

For the transform solution,

J, = Il &(z) 8(z)
I T C I _n
Hence, for y > 0 we have A = u.¢ where

= g—lﬁ / ) / i kiej"ﬂef"v”e""-‘ dk, dk. (4-123)
T —®» —w Uy

where k, = k,* is given by Eq. (4-119). In this example, ¥ as well as the



188 TIMBE-HARMONIC ELECTROMAGNETIC FIELDS

field is unique. Hence, equating Egs. (4-122) and (4-123), we have
the identity

P / °° / °° e_mjwmhﬂ hazgine dl dk,  (4-124
P 2 )] N R O Ghedhs (4-124)
This holds for all y, since k, changes sign as y changes sign.

We have considered explicitly only sheets of z-directed current. The
solution for z-directed current can be obtained by a rotation of coordi-
nates. When the current sheet has both z and 2 components, the solu-
tion is a superposition of the z-directed case and the z-directed case. The
solution for magnetic current sheets is dual to that for electric current
sheets. Finally, if the sheet contains y-directed electric currents; we can
convert to the equivalent z- and z-directed magnetic current sheet for a
solution, and vice versa for y-directed magnetic currents.

A two-dimensional problem to which we shall have oceasion to refer in
the next chapter is that of a ribbon of axially directed current, uniformly
distributed. This is shown in Fig. 4-25. The parameter of interest to us
is the “impedance per unit length,” defined by

i
Lk

where P is the complex power per unit length and I is the total current,.
Rather than work through the details, let us apply duality to the aperture
problem of Fig. 4-22. According to the concepts of Sec. 3-6, the field
¥ > 0 is unchanged if the aperture is replaced by a magnetic current
ribbon K = 2V. This ribbon radiates into whole space; so the power
per unit length is twice that from the aperture. The admittance of the
magnetic current ribbon is thus

Z (4-125)

*
z {f Ymazrib = [%Tz = g|‘2P{/—T2" = %Yapm
7 where the aperture admittance
J Yipere = Go + jB,
A \ is given by Eq. (4-105), which we can
§%s y  Tepresent by
/ , Vuprs = (ko)
X ) By duality, we have the radiation im-

JJ pedance of the electric current ribbon
given by

=1n _n
F16. 4-25. A ribbon of current. Zoteoris = 2 flka) = 3 Yeperr  (4-126)
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(Compare this with Prob. 3-7. The factor-of-two difference arises
because the aperture of Fig. 4-22 radiates into half-space and the twin-
slot line sees all-space.) For narrow ribbons, we have from Egs. (4-106)

and (4-126)
Zateosiv k_’—»oiﬂx [r + j(3.135 — 2 log ka)] (4-127)

This we shall compare to the corresponding Z for a cylinder of current in
Sec. 5-6.

PROBLEMS

4-1. Show that Eq. (4-9) is a solution to the scalar Helmholtz equation.
4-2. For k = 8 — ja, show that

sin kz = sin Bz cosh ez — j cos Bz sinh oz
cos kz = cos Bz cosh az + jsin Bz sinh az

4-3. Derive Egs. (4-17). ]
4-4. Following the method used to establish Eq. (2-93), show.;v tbat the attenuation
constant due to conductor losses in a rectangular waveguide is given by Eq. (2-93)

for all TEq, modes and by

_28r1 (a+b(./)? o\ bm? + an? ]

() mn = e [a——b i = G + V] - (f BEm? F atnt

for TE,,, modes, m and n nonzero, and by

(a)mn = 20 m2bS + n2ad
YT wab /T = (F/f) m%® + niat

for TMpu, modes. '
4-5. An air-filled rectangular waveguide is needed for operation at 10,000 mega-

cycles. It is desired to have single-mode operation over a 2:1 frequenc.y range, with
center frequency 10,000 megacycles. It is also desired to ha.ve_ maximum power-
handling capacity under these conditions. Determine the waveguide dimensions and
the attenuation constant of the propagating mode for copper walls.

4-8. For s parallel-plate waveguide formed by conductors covering the y = 0 and

y = b planes, show that

YulB = cosn—brge‘f"-' n=123...

are the mode functions generating the two-dimensional TE, modes according to Egs.
(3-89), and

nry

wnTM = SinTe_ik" n = 1: 2; 31 LR

are the mode functions generating the two-dimensional TM, modes according to Egs.
(3-86). Show that the TEM mode is generated by

'ﬁoTM = ye'—ikz
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4-7. Show that an alternative set of mode functions for the parallel-plate wave-
guide of Prob. 4-6 are

'/,"TEz = GOS% e~ ikt n = O, 1, 2, “ .

1

which generate the TEz, modes according to Eqs. (4-32), and

‘/,"TMz = sinnTwe"f”t‘ n = 1; 2: 3} . e

which generate the TMz, modes according to Eqs. (4-30). Note that n = 0 in the
above TEz mode function gives the TEM mode.

4-8. Show that the TEz and TMz modes of Sec. 4-4 are linear combinations of the
TE and TM modes of Sec. 4-3, that is,

EmnTEz = A(Em"TE + BEmnTM)
"mTMz = C(HmnTE + DHmnm)

Determine A, B, C, and D.

4-9. Show that the resonant frequencies of the two-dimensional (no z variation)
resonator formed by conducting plates over the z = 0,z = a, ¥y = 0, and y = b planes
are the cutoff frequencies of the rectangular waveguide.

4-10. Following the method used to establish Eq. (2-101), show that the @ due to
conductor losses for the various modes in a rectangular cavity are

QT = nabek,”
2@ (bck,? + 2ack,? + 2abk.?)
TE _ nabck,’
(Qe)ma = 2® (ack,® + 2bck,? + 2abk,?)
— nabckzy 2k’
Qs = AR[BC oy + ky?h?) + ac(kay® + ka2k.) + abkay??]
™ _ nabck,?
(@e)rmno = 2R (abk,? + 2bck.? + 2ack,?)
™ _ nabckz, 2k,
(@)rny = 4®[bla + k2 + ad + o)k,?)
where k, =27 B, =2 ko =PF
a b ¢

kzv = '\/m kr = ke? + ky2 + k.2

4-11. Calculate the first ten higher-order resonant frequencies for the rectangular
cavity of Prob. 2-38.

4-12. Consider the two-dimensional parallel-plate waveguide formed by conductors
over the z = 0 and £ = a planes, and dielectrics ¢; for0 < z < dand ez ford < z < a.
Show that for modes TM to z the characteristic equation is Eq. (4-45) with

kz1 = Volap — k2 kzo = Viwleps — kit

and for modes TE to z the characteristic equation is Eq. (4-47). Note that no mode
TEM to z (the direction of propagation) is possible.
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4-18. Show that the lowest-order TM to z mode of Prob. 4-12 reduces to the
transmission-line mode either as e — e; and p; — p2 or as d — 0. Show that, if
a K Ay '

- aalud + pa(a — d)]
b= oy wle—d) fad

for the dominant mode. Show that the static inductance and capacitance per unit
width and length of the transmission line are

€1€2

Lmmdtmb -0 C= =g T

The usual transmission-line formula k, = w A/LC therefore applies if @ is small.
Also, the field is almost TEM.

4-14. Consider the dominant mode of the partially filled guide (Fig. 4-6) for b > ea.
When d is small, Eq. (4-45) can be approximated by Eq. (4-48) for the dominant
mode. Denote the empty-guide propagation constant (d = 0) by

and show, from the Taylor expansion of Eq. (4-48) about d = 0 and k. = B, that for
small d

. €2 klz_k2z g
k'_ﬁ°+e_1( 280 )a

4-15. Consider the dominant mode of the partially filled guide (Fig. 4-6) fora > b.
Denote the empty-guide propagation constant (d = 0) by

and show, from the Taylor expansion of the reciprocal of Eq. (4-47) about d = 0 and
k; = Bo, that for small @

- pr—pe(m\'E | gy g (é)s
ke = Bo + paoflo (a) ‘14_31-!2430(1‘:l k) a

4-16. Show that the resonant frequencies of a partially filled rectangular cavity
(Fig. 4-6 with additional conductors covering the z = 0 and z = ¢ planes) are solu-
tions to Eqs. (4-45) and (4-47) with

bt + () + (B) = v
bt + () () =

wheren =0,1,2, . .. ;2 =0,1,2, ... ;n =p =0 excepted.
4-17. For the partially filled cavity of Prob. 4-16, show that if ¢ > b > @, the
resonant frequency of the dominant mode for small d is given by

= l_l(ﬂ_ﬂ ‘_i.-l
Wy = wo 2 B2 a)a
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where wq is the resonant frequency of the empty cavity,

Hint: Use the results of Prob. 4-14. *
4-18. For the partially filled cavity- of Prob. 4-16, show that if ¢ > a > b, the
resonant frequency of the dominant mode for small d is given by

(,, =w0[1 _uv_’ﬂ_w(w _ )(d)]

ue att+cta  3p: \ep:

where wg is the resonant frequency of the empty cavity
=G+

wy = —— -) +{=

\/52#2 a ¢

Hint: Use the results of Prob. 4-15.
4-19. Consider a rectangular waveguide with a centered dielectric slab, as shown in

the insert of Fig. 7-10. Show that the characteristic equation for determining the
propagation constants of modes TE to z is

ke cot (k,o - d) 2 ta,n (k,1 g)

and for modes TM to z it is
a— d) T (k“ ‘_‘)
€1 2

where kzoz + (_T_Ig‘r) + k;z = koz = w’eoyo

—_— ta.n (’C;o

kar? + (%)2 + k2 = k2 = wlam
The dominant mode is the lowest-order TE mode (smallest root for n = 0).

4-20. Derive Eq. (4-58).

4-21. A plane slab of polystyrene (¢, = 2.56) is 34 centimeter thick. What slab-
guide modes will propagate unattenuated at a frequency of 30,000 megacycles? Cal-
culate the cutoff frequencies of these modes. Using Fig. 4-11, determine the propa-
gation constants of the propagating TE modes at 30,000 megacycles. Determine the
propagation constants of the propagating TM modes by numerical solution of Eq.
(4-56) or (4-58). How can the cutoff frequencies of corresponding TE and TM modes
be the same, yet the propagation constants be different?

4-22. By a Taylor expansion of Eq. (4-56) about a = 0, v = 0, show that the
dominant TM mode of the slab guide (Fig. 4-10) is characterized by

=82 -
" (ka® — ko?) 5
for small ¢. Similarly, show that the dominant TE mode is characterized by

= B0 - a
=2 (ke — k) 5
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for small . In each case, the propagation constant is given by
92
k; = kO + 2_100

4-23. A plane conductor has been coated with shellac (¢, = 3.0) to a thickness of
0.005 inch. It is to be used in a 30,000-megacycle field. Will any tightly bound
surface wave be possible? Calculate the attenuation constant in the direction per-
pendicular to the coated conductor.

4-24. For the corrugated conductor of Fig. 4-15, it is desired that the field be
attenuated to 36.8 per cent of its surface value at one wavelength from the surface.
Determine the minimum depth of slot needed.

4-26. Suppose that the slots of the corrugated conductor of Fig. 4-15 are filled
with a dielectric characterized by €4, ua. Show that for this case

v = 2kstan kad
€
k. =ko \/1 + S8 tan? kud
€apto
where ka4 = o Vegua. .
4-26. Use the TEz mode functions of Prob. 4-7 for the parallel-plate waveguide

formed by conductors covering the y = 0 and y = b planes. Show that a field having
no E; is given by Eqs. (4-32) with

= z A,.cosn—we“'n' z2>0

b
n=0
€n bE d
where 4, = By /0 v zwocos-b— Y

4-27. Copsider the junction of two parallel-plate transmission lines of height ¢ for
2 < 0 and height b for z > 0, with the bottom plate continuous. (The cross section
is that of the second drawing of Fig. 4-16.) Using the formulation of Prob. 4-26,
show that the aperture susceptance per unit width referred to the aperture voltage is

B. ~ 4 sin? (nac/b)
TN L (nwe/b)? V/uE = (26701

where a constant E, has been assumed in the aperture. Compare this with Eq. (4-78).

4-28. The centered capacitive waveguide junction is shown in Fig. 4-26. Show
that the aperture susceptance referred to the maximum aperture voltage is given by
Eq. (4-78) with ), replaced by 2),. It is assumed that E, in the aperture is that of
the incident mode.

E

ﬂ' | —

}e ¢h \,
l—->
}ﬁ——a——l . Z

Fia. 4-26. A centered capacitive waveguide junction

A
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Ax px
-—

f E Incident .

EI- — wave
L T
— —
fe—b— zZ

Fia. 4-27. A centered inductive waveguide junction.
4-29. Consider the centered inductive waveguide junction of Fig. 4-27. Assuming

that E, in the aperture is that of the incident mode, show that the aperture suscept-
ance referred to the maximum aperture voltage is given by

n- () Y [ \Ey - @)

4-30. In Eq. (4-83), note that as ¢/a — 0 the summation becomes similar to an
integration. Use the analogy mc/a ~ z and ¢/a ~ dz to show that

_7] Slll ke
A c/a—PO 7!‘z

Integrate by parts, and use the identity*

“@sin2rz , _ f2giny , .
/0 22 e _/0 Y4y - si2n)
by Si(2r)
A Ba c/a—0 2

to show that = 0.226

4-31. Let there be a sheet of y-directed current J, over the z = 0 plane of 2 parallel-
pls,te waveguide formed by conductors over the ¥ = 0 and y = b planes. The guide

is matched in both the +z and —z directions. Show that the field produced by the
current sheet is

2TY ralel = { H. z2>0

ZAncos 5 ¢ . 2 <0
n=0

where An =5 / J. @) cosm’ dy

4-32. Let the current sheet of Prob. 4-31 be z-directed instead of y-directed. Show
that field produced by this z-directed current sheet is

= z B, sin’—‘l’:—ye—md

n=1

where B, ‘7"’“ f J:(y) sin % 3 dy

! D. Bierens de Haan, “Nouvelles tables d’intégrales définies,” p. 225, table 161,
no. 3, Hafner Pubhshmg Company, New York, 1939 (reprint).

—wt

——— -
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4-33. Conpsider the coax to waveguide junction of Fig. 4-28a. Only the TEy mode
propagates in the waveguide, which is matched in both directions. Assume that the
current on the wire varies as cos (kl), where [ is the distance from the end of the wire.
Show that the input resistance seen by the coax is

_a sin (wc/b) sin ch]z
R; = 3 (Zow [ ka cos k(c + d)

where (Zo)a is the TEq; characteristic wave impedance.
X
R —

a a

=5 T

d d

i Log L

Ic— C —» Y c Y
(@) ®

Fia. 4-28. Coax to waveguide junctions.

Coax

Coax

4-34. Suppose that the coax to waveguide junction of Prob. 4-33 is changed to
that of Fig. 4-28b. Show that the input resistance seen by the coax is now

a sin (we/b)[sin k{c + d) — sin kc]}?
E: = b (Zo)ur { ka cos k(c + d) }

4-36. By expanding (sin w/w)? in a Taylor series about w = 0, show that the first

of Egs. (4-105) becomes
1(ka\* | 1 (ka\* 1 (ka\® ]
)‘”G"="[1_E(E) +6—()(7) _1008(2) +
Im

4-36. Consider the second of Egs.

(4-105) as the contour integral w plane
C
(1 — eizw)dw ] ®

MB, = Re [/cl;z—m

where C; is shown in Fig. 4-29. Consider Co
the closed contour C; + C: 4 C, + Co, 3
and express MB, in terms of a contour ka/2  C Re
integral over C. and Co. Show that as
ka/2 becomes large, this last contour
integral reduces to the second of Egs.
(4-107).

C>

F16. 4-29. Contours for Prob. 4-36.
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4-37. By expanding cos® w/[(x/2)? — w?*]? in a Taylor series about w = 0, show
that the first of Eqs. (4-114) becomes

7 _g d a\ "
nee=2 2 ()
ne]

where by = +1.0 ©
bs = —0.467401
bs = +0.189108
b = —0.055613
bs = +0.012182
bs = —0.002083

4-38. Specialize the second of Egs. (4-114) to the case a = 0, integrate by parts,
and use }the identity (see Prob. 4-30)

* sin2zdg _ 2 frsiny, 2.
/; (1r/2)’—:c’—1-r/o y =8

_1 Lgim -2 =
to show that X B, —3 Si(x) o= 0.194

4-39. Show that the first of Eqs. (4-114) reduces to the contour integral

7 ka (1 4 ei2v) dw
xGogm2 g Re Uc (=72 = w=12]

where C is shown in Fig. 4-30. Consider the closed contour ¢, + C; + C, + C,,
and express G, in terms of a contour integral over C; and Cy. Evaluate this last
contour integral, and show that

7 ka
;G, ka—r = 4—1r
X

B

Ae ¢
v

E a Y
> -y
Cl 1r/2 Cl Re

Fia. 4-30. Contours for Prob. 4-39. Fi1g. 4-31. Two parallel-plate transmis-

sion lines radiating into half-space.

4-40. Two parallel-plate transmission lines opening onto & conducting plane are
excited in opposite phase and equal magnitude, as shown in Fig. 4-31. Assume E; in

i

o
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the aperture is a constant for each line, and show that the aperture susceptance
referred to the aperture voltage of one line is

8 [k sintwdw

Go=o [P SR Uiy
M Jo w?+/(ka)? — w?

B _8 (- sin w dw

¢ )‘ﬂ/ka w? VV/w? — (ka)?

4-41. Construct the vector potential A = u.) for a sheet of z-directed currents
over the y = 0 plane (Fig. 4-24) by (a) the potential integral method and (b) the
transform method. Show by use of Green’s second identity [Eq. (8-44)] that the
two ¢'s are equal. Specialize the potential integral solution to r — «, and show that

—jkr
e’ J.(—k cos ¢ sin 6, —k cos 6)

‘llr—run 4r

where J,(k-,k.) is given by Eq. (4-121).
4-42. Suppose that the current in Fig. 4-25 is z-directed rather than z-directed,
and of magnitude

Tz a
Jz = cos - |z] < 3
Show that the impedance per unit length, defined by Eq. (4-125), where I is the

current per unit length, is given by Eq. (4-126), where Yapert is now the aperture
admittance of Fig. 4-23.





